Human Action Recognition Based on Dense Trajectories Analysis and Random Forest

This paper presents a human action recognition method. It analyzes the spatio-temporal grids along the dense trajectories and generates the histogram of oriented gradients (HOG) and histogram of optical flow (HOF) to describe the appearance and motion of the human object. Then, HOG combined with HOF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子科技学刊 2016, Vol.14 (4), p.370-376
1. Verfasser: Pin-Zhong Pan Chung-Lin Huang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a human action recognition method. It analyzes the spatio-temporal grids along the dense trajectories and generates the histogram of oriented gradients (HOG) and histogram of optical flow (HOF) to describe the appearance and motion of the human object. Then, HOG combined with HOF is converted to bag-of-words (BoWs) by the vocabulary tree. Finally, it applies random forest to recognize the type of human action. In the experiments, KTH database and URADL database are tested for the performance evaluation. Comparing with the other approaches, we show that our approach has a better performance for the action videos with high inter-class and low inter-class variabilities.
ISSN:1674-862X
DOI:10.11989/JEST.1674-862X.511181