Real-Time Hand Motion Parameter Estimation with Feature Point Detection Using Kinect

This paper presents a real-time Kinect- based hand pose estimation method. Different from model-based and appearance-based approaches, our approach retrieves continuous hand motion parameters in real time. First, the hand region is segmented from the depth image. Then, some specific feature points o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子科技学刊 2014, Vol.12 (4), p.429-433
1. Verfasser: Chun-Ming Chang Che-Hao Chang Chung-Lin Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue 4
container_start_page 429
container_title 电子科技学刊
container_volume 12
creator Chun-Ming Chang Che-Hao Chang Chung-Lin Huang
description This paper presents a real-time Kinect- based hand pose estimation method. Different from model-based and appearance-based approaches, our approach retrieves continuous hand motion parameters in real time. First, the hand region is segmented from the depth image. Then, some specific feature points on the hand are located by the random forest classifier, and the relative displacements of these feature points are transformed to a rotation invariant feature vector. Finally, the system retrieves the hand joint parameters by applying the regression functions on the feature vectors. Experimental results are compared with the ground truth dataset obtained by a data glove to show the effectiveness of our approach. The effects of different distances and different rotation angles for the estimation accuracy are also evaluated.
doi_str_mv 10.3969/j.issn.1674-862X.2014.04.017
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zgdzkj_e201404017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663338775</cqvip_id><wanfj_id>zgdzkj_e201404017</wanfj_id><sourcerecordid>zgdzkj_e201404017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c617-9eeec39ad0ee3bcbf1a35c031ed9f4fea6d93e5bced03f30c56f83280c4a540d3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx_Og4Jj7H4L44kNr0muT9lHm5sSJQyr4VtLk2mWuqbYdw_31xk2Eg-O-9-F-fAm55iyETGS3m9D2vQu5kHGQiug9jBiPQ-aDyzMy-tcvyKTvbckSDkIKGY1I_opqG-S2QbpQztDndrCtoyvVqQYH7OisH2yjjuLeDms6RzXsOqSr1rqB3ntGH5tvvXU1fbLO15fkvFLbHid_eUzy-SyfLoLly8Pj9G4ZaMFlkCGihkwZhgilLiuuINEMOJqsiitUwmSASanRMKiA6URUKUQp07FKYmZgTG5OY_fKVcrVxabddc4vLA61OXxsCvy1gcXeBM9enVi9bl395W8tPjv_WPddCAEAqZQJ_ABQMmNy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Real-Time Hand Motion Parameter Estimation with Feature Point Detection Using Kinect</title><source>Alma/SFX Local Collection</source><creator>Chun-Ming Chang Che-Hao Chang Chung-Lin Huang</creator><creatorcontrib>Chun-Ming Chang Che-Hao Chang Chung-Lin Huang</creatorcontrib><description>This paper presents a real-time Kinect- based hand pose estimation method. Different from model-based and appearance-based approaches, our approach retrieves continuous hand motion parameters in real time. First, the hand region is segmented from the depth image. Then, some specific feature points on the hand are located by the random forest classifier, and the relative displacements of these feature points are transformed to a rotation invariant feature vector. Finally, the system retrieves the hand joint parameters by applying the regression functions on the feature vectors. Experimental results are compared with the ground truth dataset obtained by a data glove to show the effectiveness of our approach. The effects of different distances and different rotation angles for the estimation accuracy are also evaluated.</description><identifier>ISSN: 1674-862X</identifier><identifier>DOI: 10.3969/j.issn.1674-862X.2014.04.017</identifier><language>eng</language><publisher>Department of Applied Informatics and Multimedia, Asia University, Taichung%Department of Informatics and Multimedia, Asia University, Taichung</publisher><subject>估计方法 ; 基于模型 ; 实时 ; 手动 ; 深度图像分割 ; 特征向量 ; 特征点提取 ; 运动参数估计</subject><ispartof>电子科技学刊, 2014, Vol.12 (4), p.429-433</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87980A/87980A.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Chun-Ming Chang Che-Hao Chang Chung-Lin Huang</creatorcontrib><title>Real-Time Hand Motion Parameter Estimation with Feature Point Detection Using Kinect</title><title>电子科技学刊</title><addtitle>Journal of Electronic Science Technology</addtitle><description>This paper presents a real-time Kinect- based hand pose estimation method. Different from model-based and appearance-based approaches, our approach retrieves continuous hand motion parameters in real time. First, the hand region is segmented from the depth image. Then, some specific feature points on the hand are located by the random forest classifier, and the relative displacements of these feature points are transformed to a rotation invariant feature vector. Finally, the system retrieves the hand joint parameters by applying the regression functions on the feature vectors. Experimental results are compared with the ground truth dataset obtained by a data glove to show the effectiveness of our approach. The effects of different distances and different rotation angles for the estimation accuracy are also evaluated.</description><subject>估计方法</subject><subject>基于模型</subject><subject>实时</subject><subject>手动</subject><subject>深度图像分割</subject><subject>特征向量</subject><subject>特征点提取</subject><subject>运动参数估计</subject><issn>1674-862X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx_Og4Jj7H4L44kNr0muT9lHm5sSJQyr4VtLk2mWuqbYdw_31xk2Eg-O-9-F-fAm55iyETGS3m9D2vQu5kHGQiug9jBiPQ-aDyzMy-tcvyKTvbckSDkIKGY1I_opqG-S2QbpQztDndrCtoyvVqQYH7OisH2yjjuLeDms6RzXsOqSr1rqB3ntGH5tvvXU1fbLO15fkvFLbHid_eUzy-SyfLoLly8Pj9G4ZaMFlkCGihkwZhgilLiuuINEMOJqsiitUwmSASanRMKiA6URUKUQp07FKYmZgTG5OY_fKVcrVxabddc4vLA61OXxsCvy1gcXeBM9enVi9bl395W8tPjv_WPddCAEAqZQJ_ABQMmNy</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Chun-Ming Chang Che-Hao Chang Chung-Lin Huang</creator><general>Department of Applied Informatics and Multimedia, Asia University, Taichung%Department of Informatics and Multimedia, Asia University, Taichung</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2014</creationdate><title>Real-Time Hand Motion Parameter Estimation with Feature Point Detection Using Kinect</title><author>Chun-Ming Chang Che-Hao Chang Chung-Lin Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c617-9eeec39ad0ee3bcbf1a35c031ed9f4fea6d93e5bced03f30c56f83280c4a540d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>估计方法</topic><topic>基于模型</topic><topic>实时</topic><topic>手动</topic><topic>深度图像分割</topic><topic>特征向量</topic><topic>特征点提取</topic><topic>运动参数估计</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun-Ming Chang Che-Hao Chang Chung-Lin Huang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>电子科技学刊</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun-Ming Chang Che-Hao Chang Chung-Lin Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Hand Motion Parameter Estimation with Feature Point Detection Using Kinect</atitle><jtitle>电子科技学刊</jtitle><addtitle>Journal of Electronic Science Technology</addtitle><date>2014</date><risdate>2014</risdate><volume>12</volume><issue>4</issue><spage>429</spage><epage>433</epage><pages>429-433</pages><issn>1674-862X</issn><abstract>This paper presents a real-time Kinect- based hand pose estimation method. Different from model-based and appearance-based approaches, our approach retrieves continuous hand motion parameters in real time. First, the hand region is segmented from the depth image. Then, some specific feature points on the hand are located by the random forest classifier, and the relative displacements of these feature points are transformed to a rotation invariant feature vector. Finally, the system retrieves the hand joint parameters by applying the regression functions on the feature vectors. Experimental results are compared with the ground truth dataset obtained by a data glove to show the effectiveness of our approach. The effects of different distances and different rotation angles for the estimation accuracy are also evaluated.</abstract><pub>Department of Applied Informatics and Multimedia, Asia University, Taichung%Department of Informatics and Multimedia, Asia University, Taichung</pub><doi>10.3969/j.issn.1674-862X.2014.04.017</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-862X
ispartof 电子科技学刊, 2014, Vol.12 (4), p.429-433
issn 1674-862X
language eng
recordid cdi_wanfang_journals_zgdzkj_e201404017
source Alma/SFX Local Collection
subjects 估计方法
基于模型
实时
手动
深度图像分割
特征向量
特征点提取
运动参数估计
title Real-Time Hand Motion Parameter Estimation with Feature Point Detection Using Kinect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Hand%20Motion%20Parameter%20Estimation%20with%20Feature%20Point%20Detection%20Using%20Kinect&rft.jtitle=%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%AD%A6%E5%88%8A&rft.au=Chun-Ming%20Chang%20Che-Hao%20Chang%20Chung-Lin%20Huang&rft.date=2014&rft.volume=12&rft.issue=4&rft.spage=429&rft.epage=433&rft.pages=429-433&rft.issn=1674-862X&rft_id=info:doi/10.3969/j.issn.1674-862X.2014.04.017&rft_dat=%3Cwanfang_jour_chong%3Ezgdzkj_e201404017%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=663338775&rft_wanfj_id=zgdzkj_e201404017&rfr_iscdi=true