Real-Time Hand Motion Parameter Estimation with Feature Point Detection Using Kinect

This paper presents a real-time Kinect- based hand pose estimation method. Different from model-based and appearance-based approaches, our approach retrieves continuous hand motion parameters in real time. First, the hand region is segmented from the depth image. Then, some specific feature points o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子科技学刊 2014, Vol.12 (4), p.429-433
1. Verfasser: Chun-Ming Chang Che-Hao Chang Chung-Lin Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a real-time Kinect- based hand pose estimation method. Different from model-based and appearance-based approaches, our approach retrieves continuous hand motion parameters in real time. First, the hand region is segmented from the depth image. Then, some specific feature points on the hand are located by the random forest classifier, and the relative displacements of these feature points are transformed to a rotation invariant feature vector. Finally, the system retrieves the hand joint parameters by applying the regression functions on the feature vectors. Experimental results are compared with the ground truth dataset obtained by a data glove to show the effectiveness of our approach. The effects of different distances and different rotation angles for the estimation accuracy are also evaluated.
ISSN:1674-862X
DOI:10.3969/j.issn.1674-862X.2014.04.017