Parallelizing Modified Cuckoo Search on MapReduce Architecture

Meta-heuristics typically takes long time to search optimality from huge amounts of data samples for applications like communication, medicine, and civil engineering. Therefore, parallelizing meta-heuristics to massively reduce runtime is one hot topic in related research. In this paper, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子科技学刊 2013, Vol.11 (2), p.115-123
1. Verfasser: Chia-Yu Lin Yuan-Ming Pai Kun-Hung Tsai Charles H.-P. Wen Li-Chun Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Meta-heuristics typically takes long time to search optimality from huge amounts of data samples for applications like communication, medicine, and civil engineering. Therefore, parallelizing meta-heuristics to massively reduce runtime is one hot topic in related research. In this paper, we propose a MapReduce modified cuckoo search (MRMCS), an efficient modified cuckoo search (MCS) implementation on a MapReduce architecture--Hadoop. MapReduce particle swarm optimization (MRPSO) from a previous work is also implemented for comparison. Four evaluation functions and two engineering design problems are used to conduct experiments. As a result, MRMCS shows better convergence in obtaining optimality than MRPSO with two to four times speed-up.
ISSN:1674-862X
DOI:10.3969/j.issn.1674-862X.2013.02.002