Research on PCA and KPCA Self-Fusion Based MSTAR SAR Automatic Target Recognition Algorithm

This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子科技学刊 2012, Vol.10 (4), p.352-357
1. Verfasser: Chuang Lin Fei Peng Bing-Hui Wang Wei-Feng Sun Xiang-Jie Kong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then utilizes the adaptive feature fusion algorithm which is based on the weighted maximum margin criterion (WMMC) to fuse the features in order to achieve better performance. The linear regression classifier is used in the experiments. The experimental results indicate that the proposed self-fusion algorithm achieves higher recognition rate compared with the traditional PCA and KPCA feature fusion algorithms.
ISSN:1674-862X
DOI:10.3969/j.issn.1674-862X.2012.04.011