基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法
短期电力负荷的精准预测可以有效指导机组组合调度、经济调度与电力市场运营.针对输入数据特征量受限时负荷预测的低精度问题,提出一种基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法.通过建立融合局部特征预提取模块的LSTM(long short term memory)网络结构,并将其与XGBoost(eXtreme boosting system)预测模型并行结合,之后结合MAPE-RW(mean absolute percentage error-reciprocal weight)算法进行模型融合初始权重设置,对最佳权重进行搜索,构建最佳融合模型.通过运用电力负荷数据对所提...
Gespeichert in:
Veröffentlicht in: | 中国电力 2021-05, Vol.54 (5), p.46-55 |
---|---|
Hauptverfasser: | , , , |
Format: | Magazinearticle |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 短期电力负荷的精准预测可以有效指导机组组合调度、经济调度与电力市场运营.针对输入数据特征量受限时负荷预测的低精度问题,提出一种基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法.通过建立融合局部特征预提取模块的LSTM(long short term memory)网络结构,并将其与XGBoost(eXtreme boosting system)预测模型并行结合,之后结合MAPE-RW(mean absolute percentage error-reciprocal weight)算法进行模型融合初始权重设置,对最佳权重进行搜索,构建最佳融合模型.通过运用电力负荷数据对所提方法进行预测实验,结果表明CNN-LSTM-XGBoost模型的MAPE(mean absolute percentage error)与RMSE(root mean square error)分别为0.377%与148.419 MW,相比于单一网络模型与融合模型结构实现了误差指标的显著降低,验证了基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法具有较快的模型训练速度、较高的预测准确度与较低的预测误差. |
---|---|
ISSN: | 1004-9649 |
DOI: | 10.11930/j.issn.1004-9649.202004026 |