偏微分方程Δ2u-sΔu+k2u=0边值问题的MRM边界变分方程

O1; 导出边值问题Δ2u-sΔu+k2u=o;x∈Ω∪Ω'(R2;u|г=uo;аu/аn|г=go的定解问题,MRM边界变分方程,全平面解的表达式.从中可以看出,MRM边界变分方程中只包含弱奇异积分核,并且自动消除了原第一、二MRM边界积分方程中出现的强奇异积分核.问题解的表达式后并不加任何多项式,因而也不需要引入Lagrange乘子求解该项,这给边界元数值求解过程带来极大的方便.数值分析结果表明该方法具有明显优势....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:应用数学学报 2002, Vol.25 (4), p.660-665
Hauptverfasser: 李炳杰, 王国正
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:O1; 导出边值问题Δ2u-sΔu+k2u=o;x∈Ω∪Ω'(R2;u|г=uo;аu/аn|г=go的定解问题,MRM边界变分方程,全平面解的表达式.从中可以看出,MRM边界变分方程中只包含弱奇异积分核,并且自动消除了原第一、二MRM边界积分方程中出现的强奇异积分核.问题解的表达式后并不加任何多项式,因而也不需要引入Lagrange乘子求解该项,这给边界元数值求解过程带来极大的方便.数值分析结果表明该方法具有明显优势.
ISSN:0254-3079
DOI:10.3321/j.issn:0254-3079.2002.04.008