Vibration of fluid-conveying pipe with nonlinear supports at both ends
The axial fluid-induced vibration of pipes is very widespread in engineering applications. The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated. The multi-scale method combined with the modal revision method is formulated for the...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2022-06, Vol.43 (6), p.845-862 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 862 |
---|---|
container_issue | 6 |
container_start_page | 845 |
container_title | Applied mathematics and mechanics |
container_volume | 43 |
creator | Wei, Sha Yan, Xiong Fan, Xin Mao, Xiaoye Ding, Hu Chen, Liqun |
description | The axial fluid-induced vibration of pipes is very widespread in engineering applications. The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated. The multi-scale method combined with the modal revision method is formulated for the fluid-conveying pipe system with nonlinear boundary conditions. The governing equations and the nonlinear boundary conditions are rescaled simultaneously as linear inhomogeneous equations and linear inhomogeneous boundary conditions on different time-scales. The modal revision method is used to transform the linear inhomogeneous boundary problem into a linear homogeneous boundary problem. The differential quadrature element method (DQEM) is used to verify the approximate analytical results. The results show good agreement between these two methods. A detailed analysis of the boundary nonlinearity is also presented. The obtained results demonstrate that the boundary nonlinearities have a significant effect on the dynamic characteristics of the fluid-conveying pipe, and can lead to significant differences in the dynamic responses of the pipe system. |
doi_str_mv | 10.1007/s10483-022-2857-6 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e202206005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>yysxhlx_e202206005</wanfj_id><sourcerecordid>yysxhlx_e202206005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2665-6669a909fd81ec9ff150554c67ca2e83ef1cc7e041b51420bdfc6ff98041ffaf3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCNyE6yeZj9yjFqlDwol5Dmk3aLWuyJlvb_nsjK_TkaWDmed-BB6FrAncEQN4nAqwqMVCKacUlFidoQrgsMZWcnaIJUF5iVlF5ji5S2gAAk4xN0PyjXUY9tMEXwRWu27YNNsF_20PrV0Xf9rbYtcO68MF3rbc6Fmnb9yEOqdBDsQz5ZH2TLtGZ012yV39zit7nj2-zZ7x4fXqZPSywoUJwLISodQ21aypiTe0c4cA5M0IaTW1VWkeMkRYYWXLCKCwbZ4RzdZU3zmlXTtHt2LvT3mm_UpuwjT5_VIdD2q-7vbI0OwABwDN8M8J9DF9bm4YjTYUsBWF1WWaKjJSJIaVonepj-6njQRFQv27V6FblXvXrVomcoWMmZdavbDw2_x_6AZejfBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673614933</pqid></control><display><type>article</type><title>Vibration of fluid-conveying pipe with nonlinear supports at both ends</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Wei, Sha ; Yan, Xiong ; Fan, Xin ; Mao, Xiaoye ; Ding, Hu ; Chen, Liqun</creator><creatorcontrib>Wei, Sha ; Yan, Xiong ; Fan, Xin ; Mao, Xiaoye ; Ding, Hu ; Chen, Liqun</creatorcontrib><description>The axial fluid-induced vibration of pipes is very widespread in engineering applications. The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated. The multi-scale method combined with the modal revision method is formulated for the fluid-conveying pipe system with nonlinear boundary conditions. The governing equations and the nonlinear boundary conditions are rescaled simultaneously as linear inhomogeneous equations and linear inhomogeneous boundary conditions on different time-scales. The modal revision method is used to transform the linear inhomogeneous boundary problem into a linear homogeneous boundary problem. The differential quadrature element method (DQEM) is used to verify the approximate analytical results. The results show good agreement between these two methods. A detailed analysis of the boundary nonlinearity is also presented. The obtained results demonstrate that the boundary nonlinearities have a significant effect on the dynamic characteristics of the fluid-conveying pipe, and can lead to significant differences in the dynamic responses of the pipe system.</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-022-2857-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Boundary conditions ; Classical Mechanics ; Conveying ; Dynamic characteristics ; Fluid- and Aerodynamics ; Forced vibration ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Multiscale analysis ; Nonlinearity ; Partial Differential Equations ; Pipes ; Quadratures ; Revisions ; Viscoelastic fluids</subject><ispartof>Applied mathematics and mechanics, 2022-06, Vol.43 (6), p.845-862</ispartof><rights>Shanghai University 2022</rights><rights>Shanghai University 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2665-6669a909fd81ec9ff150554c67ca2e83ef1cc7e041b51420bdfc6ff98041ffaf3</citedby><cites>FETCH-LOGICAL-c2665-6669a909fd81ec9ff150554c67ca2e83ef1cc7e041b51420bdfc6ff98041ffaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/yysxhlx-e/yysxhlx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10483-022-2857-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10483-022-2857-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Wei, Sha</creatorcontrib><creatorcontrib>Yan, Xiong</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><creatorcontrib>Mao, Xiaoye</creatorcontrib><creatorcontrib>Ding, Hu</creatorcontrib><creatorcontrib>Chen, Liqun</creatorcontrib><title>Vibration of fluid-conveying pipe with nonlinear supports at both ends</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><description>The axial fluid-induced vibration of pipes is very widespread in engineering applications. The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated. The multi-scale method combined with the modal revision method is formulated for the fluid-conveying pipe system with nonlinear boundary conditions. The governing equations and the nonlinear boundary conditions are rescaled simultaneously as linear inhomogeneous equations and linear inhomogeneous boundary conditions on different time-scales. The modal revision method is used to transform the linear inhomogeneous boundary problem into a linear homogeneous boundary problem. The differential quadrature element method (DQEM) is used to verify the approximate analytical results. The results show good agreement between these two methods. A detailed analysis of the boundary nonlinearity is also presented. The obtained results demonstrate that the boundary nonlinearities have a significant effect on the dynamic characteristics of the fluid-conveying pipe, and can lead to significant differences in the dynamic responses of the pipe system.</description><subject>Applications of Mathematics</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Conveying</subject><subject>Dynamic characteristics</subject><subject>Fluid- and Aerodynamics</subject><subject>Forced vibration</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiscale analysis</subject><subject>Nonlinearity</subject><subject>Partial Differential Equations</subject><subject>Pipes</subject><subject>Quadratures</subject><subject>Revisions</subject><subject>Viscoelastic fluids</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuCNyE6yeZj9yjFqlDwol5Dmk3aLWuyJlvb_nsjK_TkaWDmed-BB6FrAncEQN4nAqwqMVCKacUlFidoQrgsMZWcnaIJUF5iVlF5ji5S2gAAk4xN0PyjXUY9tMEXwRWu27YNNsF_20PrV0Xf9rbYtcO68MF3rbc6Fmnb9yEOqdBDsQz5ZH2TLtGZ012yV39zit7nj2-zZ7x4fXqZPSywoUJwLISodQ21aypiTe0c4cA5M0IaTW1VWkeMkRYYWXLCKCwbZ4RzdZU3zmlXTtHt2LvT3mm_UpuwjT5_VIdD2q-7vbI0OwABwDN8M8J9DF9bm4YjTYUsBWF1WWaKjJSJIaVonepj-6njQRFQv27V6FblXvXrVomcoWMmZdavbDw2_x_6AZejfBw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Wei, Sha</creator><creator>Yan, Xiong</creator><creator>Fan, Xin</creator><creator>Mao, Xiaoye</creator><creator>Ding, Hu</creator><creator>Chen, Liqun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Shanghai Institute of Applied Mathematics and Mechanics,Shanghai Key Laboratory of Mechanics in Energy Engineering,School of Mechanics and Engineering Science,Shanghai University,Shanghai 200072,China%School of Engineering Science,University of Science and Technology of China,Hefei 230026,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220601</creationdate><title>Vibration of fluid-conveying pipe with nonlinear supports at both ends</title><author>Wei, Sha ; Yan, Xiong ; Fan, Xin ; Mao, Xiaoye ; Ding, Hu ; Chen, Liqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2665-6669a909fd81ec9ff150554c67ca2e83ef1cc7e041b51420bdfc6ff98041ffaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Conveying</topic><topic>Dynamic characteristics</topic><topic>Fluid- and Aerodynamics</topic><topic>Forced vibration</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiscale analysis</topic><topic>Nonlinearity</topic><topic>Partial Differential Equations</topic><topic>Pipes</topic><topic>Quadratures</topic><topic>Revisions</topic><topic>Viscoelastic fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Sha</creatorcontrib><creatorcontrib>Yan, Xiong</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><creatorcontrib>Mao, Xiaoye</creatorcontrib><creatorcontrib>Ding, Hu</creatorcontrib><creatorcontrib>Chen, Liqun</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Sha</au><au>Yan, Xiong</au><au>Fan, Xin</au><au>Mao, Xiaoye</au><au>Ding, Hu</au><au>Chen, Liqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration of fluid-conveying pipe with nonlinear supports at both ends</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>43</volume><issue>6</issue><spage>845</spage><epage>862</epage><pages>845-862</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The axial fluid-induced vibration of pipes is very widespread in engineering applications. The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated. The multi-scale method combined with the modal revision method is formulated for the fluid-conveying pipe system with nonlinear boundary conditions. The governing equations and the nonlinear boundary conditions are rescaled simultaneously as linear inhomogeneous equations and linear inhomogeneous boundary conditions on different time-scales. The modal revision method is used to transform the linear inhomogeneous boundary problem into a linear homogeneous boundary problem. The differential quadrature element method (DQEM) is used to verify the approximate analytical results. The results show good agreement between these two methods. A detailed analysis of the boundary nonlinearity is also presented. The obtained results demonstrate that the boundary nonlinearities have a significant effect on the dynamic characteristics of the fluid-conveying pipe, and can lead to significant differences in the dynamic responses of the pipe system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10483-022-2857-6</doi><tpages>18</tpages><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2022-06, Vol.43 (6), p.845-862 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e202206005 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Boundary conditions Classical Mechanics Conveying Dynamic characteristics Fluid- and Aerodynamics Forced vibration Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Multiscale analysis Nonlinearity Partial Differential Equations Pipes Quadratures Revisions Viscoelastic fluids |
title | Vibration of fluid-conveying pipe with nonlinear supports at both ends |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20of%20fluid-conveying%20pipe%20with%20nonlinear%20supports%20at%20both%20ends&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Wei,%20Sha&rft.date=2022-06-01&rft.volume=43&rft.issue=6&rft.spage=845&rft.epage=862&rft.pages=845-862&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-022-2857-6&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e202206005%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673614933&rft_id=info:pmid/&rft_wanfj_id=yysxhlx_e202206005&rfr_iscdi=true |