Vibration of fluid-conveying pipe with nonlinear supports at both ends
The axial fluid-induced vibration of pipes is very widespread in engineering applications. The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated. The multi-scale method combined with the modal revision method is formulated for the...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2022-06, Vol.43 (6), p.845-862 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The axial fluid-induced vibration of pipes is very widespread in engineering applications. The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated. The multi-scale method combined with the modal revision method is formulated for the fluid-conveying pipe system with nonlinear boundary conditions. The governing equations and the nonlinear boundary conditions are rescaled simultaneously as linear inhomogeneous equations and linear inhomogeneous boundary conditions on different time-scales. The modal revision method is used to transform the linear inhomogeneous boundary problem into a linear homogeneous boundary problem. The differential quadrature element method (DQEM) is used to verify the approximate analytical results. The results show good agreement between these two methods. A detailed analysis of the boundary nonlinearity is also presented. The obtained results demonstrate that the boundary nonlinearities have a significant effect on the dynamic characteristics of the fluid-conveying pipe, and can lead to significant differences in the dynamic responses of the pipe system. |
---|---|
ISSN: | 0253-4827 1573-2754 |
DOI: | 10.1007/s10483-022-2857-6 |