Vibration of fluid-conveying pipe with nonlinear supports at both ends

The axial fluid-induced vibration of pipes is very widespread in engineering applications. The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated. The multi-scale method combined with the modal revision method is formulated for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2022-06, Vol.43 (6), p.845-862
Hauptverfasser: Wei, Sha, Yan, Xiong, Fan, Xin, Mao, Xiaoye, Ding, Hu, Chen, Liqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The axial fluid-induced vibration of pipes is very widespread in engineering applications. The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated. The multi-scale method combined with the modal revision method is formulated for the fluid-conveying pipe system with nonlinear boundary conditions. The governing equations and the nonlinear boundary conditions are rescaled simultaneously as linear inhomogeneous equations and linear inhomogeneous boundary conditions on different time-scales. The modal revision method is used to transform the linear inhomogeneous boundary problem into a linear homogeneous boundary problem. The differential quadrature element method (DQEM) is used to verify the approximate analytical results. The results show good agreement between these two methods. A detailed analysis of the boundary nonlinearity is also presented. The obtained results demonstrate that the boundary nonlinearities have a significant effect on the dynamic characteristics of the fluid-conveying pipe, and can lead to significant differences in the dynamic responses of the pipe system.
ISSN:0253-4827
1573-2754
DOI:10.1007/s10483-022-2857-6