Continuous adjoint-based error estimation and its application to adaptive discontinuous Galerkin method
Abstract An adaptive mesh refinement algorithm based on a continuous adjoint ap- proach is developed. Both the primal equation and the adjoint equation are approximated with the discontinuous Galerkin (DG) method. The proposed adaptive algorithm is used in compressible Euler equations. Numerical tes...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2016-11, Vol.37 (11), p.1419-1430 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract An adaptive mesh refinement algorithm based on a continuous adjoint ap- proach is developed. Both the primal equation and the adjoint equation are approximated with the discontinuous Galerkin (DG) method. The proposed adaptive algorithm is used in compressible Euler equations. Numerical tests are made to show the superiority of the proposed adaptive algorithm. |
---|---|
ISSN: | 0253-4827 1573-2754 |
DOI: | 10.1007/s10483-016-2102-6 |