Global instability of Stokes layer for whole wave numbers
The study on the global instability of a Stokes layer, which is a typical unsteady flow, is usually a paradigm for understanding the instability and transition of unsteady flows. Previous studies suggest that the neutral curve of the global instability obtained by the Floquet theory is only mapped o...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and mechanics 2016-08, Vol.37 (8), p.999-1012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study on the global instability of a Stokes layer, which is a typical unsteady flow, is usually a paradigm for understanding the instability and transition of unsteady flows. Previous studies suggest that the neutral curve of the global instability obtained by the Floquet theory is only mapped out in a limited range of wave numbers (0.2 ≤ a ≤ 0.5). In this paper, the global instability is investigated with numerical simulations for all wave numbers. It is revealed that the peak of the disturbances displays irregularity rather than the periodic evolution while the wave number is beyond the above range. A "neutral point" is redefined, and a neutral curve of the global instability is presented for the whole wave numbers with this new definition. This work provides a deeper understanding of the global instability of unsteady flows. |
---|---|
ISSN: | 0253-4827 1573-2754 |
DOI: | 10.1007/s10483-016-2113-8 |