Numerical investigation of transonic flow over deformable airfoil with plunging motion

In this article, the transonic inviscid flow over a deformable airfoil with plunging motion is studied numerically. A finite volume method based on the Roe scheme developed in a generalized coordinate is used along with an arbitrary Lagrangian-Eulerian method and a dynamic mesh algorithm to track th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2016-01, Vol.37 (1), p.75-96
Hauptverfasser: Nekoubin, N., Nobari, M. R. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the transonic inviscid flow over a deformable airfoil with plunging motion is studied numerically. A finite volume method based on the Roe scheme developed in a generalized coordinate is used along with an arbitrary Lagrangian-Eulerian method and a dynamic mesh algorithm to track the instantaneous position of the airfoil. The effects of different governing parameters such as the phase angle, the deformation amplitude, the initial angle of attack, the flapping frequency, and the Mach number on the unsteady flow field and aerodynamic coefficients are investigated in detail. The results show that maneuverability of the airfoil under various flow conditions is improved by the deformation. In addition, as the oscillation frequency of the airfoil increases, its aerodynamic performance is significantly improved.
ISSN:0253-4827
1573-2754
DOI:10.1007/s10483-016-2019-9