New explicit multi-symplectic scheme for nonlinear wave equation

Based on splitting multi-symplectic structures, a new multi-symplectic scheme is proposed and applied to a nonlinear wave equation. The explicit multi-symplectic scheme of the nonlinear wave equation is obtained, and the corresponding multi-symplectic conservation property is proved. The backward er...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2014-03, Vol.35 (3), p.369-380
1. Verfasser: 李昊辰 孙建强 秦孟兆
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on splitting multi-symplectic structures, a new multi-symplectic scheme is proposed and applied to a nonlinear wave equation. The explicit multi-symplectic scheme of the nonlinear wave equation is obtained, and the corresponding multi-symplectic conservation property is proved. The backward error analysis shows that the explicit multi-symplectic scheme has good accuracy. The sine-Gordon equation and the KleinGordon equation are simulated by an explicit multi-symplectic scheme. The numerical results show that the new explicit multi-symplectic scheme can well simulate the solitary wave behaviors of the nonlinear wave equation and approximately preserve the relative energy error of the equation.
ISSN:0253-4827
1573-2754
DOI:10.1007/s10483-014-1797-6