RESEARCH ON RELIABILITY GROWTH FOR SYNCHRONOUSLY DEVELOPED MULTI-SYSTEMS

An advanced reliability growth model, i. e. exponential model, was presented to estimate the model parameters for multi-systems, which was synchronously tested, synchronously censored, and synchronously improved. In the presented method, the data during the reliability growth process were taken into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2005-09, Vol.26 (9), p.1121-1125
1. Verfasser: 马小宁 吕震宙 岳珠峰
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An advanced reliability growth model, i. e. exponential model, was presented to estimate the model parameters for multi-systems, which was synchronously tested, synchronously censored, and synchronously improved. In the presented method, the data during the reliability growth process were taken into consideration sufficiently, including the failure numbers, safety numbers and failure time at each censored time. If the multi-systems were synchronously improved for many times, and the reliability growth of each system fitted AMSAA (Army Material Systems Analysis Activity) model, the failure time of each system could be considered rationally as an exponential distribution between two adjoining censored times. The nonparametric method was employed to obtain the reliability at each censored time of the synchronous multisystems. The point estimations of the model parameters, a and b, were given by the least square method. The confidence interval for the parameter b was given as well. An engineering illustration was used to compare the result of the presented method with those of the available models. The result shows that the presented exponential growth model fits AMSAA-BISE ( Army Material Systems Analysis Activity-Beijing Institute of Structure and Environment) model rather well, and two models are suitable to estimate the reliability growth for the synchronously developed multi-systems.
ISSN:0253-4827
1573-2754
DOI:10.1007/bf02507720