TIME PRECISE INTEGRATION METHOD FOR CONSTRAINED NONLINEAR CONTROL SYSTEM

For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by introducing into the dual variable (Lagrange multiplier vector), the dynamic equation can be transformed into Hamilton system from Lagrange system on the basi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 2002, Vol.23 (1), p.18-25
1. Verfasser: DENG Zi-chen(邓子辰) ZHONG Wan-xie(钟万勰)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by introducing into the dual variable (Lagrange multiplier vector), the dynamic equation can be transformed into Hamilton system from Lagrange system on the basis of the original variable. Under the whole state, the problem discussed can be described from a new view, and the equation can be precisely solved by the time precise integration method established in linear dynamic system. A numerical example shows the effectiveness of the method.
ISSN:0253-4827
1573-2754
DOI:10.1007/bf02437726