带时间窗偏好的同时配集货且需求可拆分车辆路径问题

针对带时间窗偏好的同时配集货且需求可拆分车辆路径问题,最小化派遣成本、理货成本、时间窗惩罚成本以及油耗成本之和,建立数学模型。设计混合遗传变邻域搜索算法求解问题,在算法中引入时空距离的理念,首先用最近邻插入法和Logistic映射方程生成初始种群;然后利用变邻域搜索算法的深度搜索能力优化算法;提出自适应搜索策略,平衡种群进化所需的广度和深度;设计拆分准则,为各客户设置不同的拆分服务量;提出确定车辆最优出发时间的时差推移法,减少车辆在客户处的等待时间;最后通过多组算例验证本文模型和算法的有效性。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:运筹与管理 2022-11, Vol.31 (11), p.65-71
Hauptverfasser: 范厚明, 任晓雪, 刘浩
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:针对带时间窗偏好的同时配集货且需求可拆分车辆路径问题,最小化派遣成本、理货成本、时间窗惩罚成本以及油耗成本之和,建立数学模型。设计混合遗传变邻域搜索算法求解问题,在算法中引入时空距离的理念,首先用最近邻插入法和Logistic映射方程生成初始种群;然后利用变邻域搜索算法的深度搜索能力优化算法;提出自适应搜索策略,平衡种群进化所需的广度和深度;设计拆分准则,为各客户设置不同的拆分服务量;提出确定车辆最优出发时间的时差推移法,减少车辆在客户处的等待时间;最后通过多组算例验证本文模型和算法的有效性。
ISSN:1007-3221
DOI:10.12005/orms.2022.0354