基于基本回路修正的AHP一致性调整方法研究
为解决AHP一致性问题,提出一种基于基本回路修正的调整方法,能够同时解决数值不一致和逻辑不一致问题,同时保证对原始信息的修改量最小。数值不一致和逻辑不一致均由决策者的不准确判断引起,其中数值不一致可以通过降低一致性比率(CR)值进行改善,而逻辑不一致只有将判断矩阵中所有三阶回路去除才能得到解决。因此,通过对n阶判断矩阵进行基本矩阵分解,得到Cn^3个3阶的基本矩阵,其中存在三阶回路的称为基本回路,从而将判断矩阵的一致性修正问题转化为基本回路的一致性修正问题。通过对基本回路的一致性比较,提出了两种确定最不一致元素的方法,即CR和最大法和优化法,并设计了优化模型对最不一致元素进行修正。最后,通过算...
Gespeichert in:
Veröffentlicht in: | 运筹与管理 2020-04, Vol.29 (4), p.147-157 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 为解决AHP一致性问题,提出一种基于基本回路修正的调整方法,能够同时解决数值不一致和逻辑不一致问题,同时保证对原始信息的修改量最小。数值不一致和逻辑不一致均由决策者的不准确判断引起,其中数值不一致可以通过降低一致性比率(CR)值进行改善,而逻辑不一致只有将判断矩阵中所有三阶回路去除才能得到解决。因此,通过对n阶判断矩阵进行基本矩阵分解,得到Cn^3个3阶的基本矩阵,其中存在三阶回路的称为基本回路,从而将判断矩阵的一致性修正问题转化为基本回路的一致性修正问题。通过对基本回路的一致性比较,提出了两种确定最不一致元素的方法,即CR和最大法和优化法,并设计了优化模型对最不一致元素进行修正。最后,通过算例分析验证了本文方法的可行性,与已有方法的对比结论证明了本文方法更为有效。 |
---|---|
ISSN: | 1007-3221 |
DOI: | 10.12005/orms.2020.0101 |