支持向量机中一种参数优化选取方法

本文给出一种支持向量机中的参数优化选取方法. 它是通过遗传算法和确定性算法相结合解平衡约束优化问题,求出二分类支持向量机(SVM)中的正则参数C,本文将C作为优化问题中的变量来处理.遗传算法用来求解以C为变量的优化问题, 而确定性算法对每一个C值求解约束.数值计算的结果表明,用文中所述的方法求得的C值能明显提高支持向量机的泛化性能....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:运筹与管理 2007-06, Vol.16 (3), p.61-65
1. Verfasser: 董玉林 夏尊铨 杨慎恭
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:本文给出一种支持向量机中的参数优化选取方法. 它是通过遗传算法和确定性算法相结合解平衡约束优化问题,求出二分类支持向量机(SVM)中的正则参数C,本文将C作为优化问题中的变量来处理.遗传算法用来求解以C为变量的优化问题, 而确定性算法对每一个C值求解约束.数值计算的结果表明,用文中所述的方法求得的C值能明显提高支持向量机的泛化性能.
ISSN:1007-3221
DOI:10.3969/j.issn.1007-3221.2007.03.012