Situation assessment for air combat based on novel semi-supervised naive Bayes

A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrument, the problem of air combat situation assessment is equivalent to the situation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems engineering and electronics 2018-08, Vol.29 (4), p.768-779
Hauptverfasser: XU Ximeng, YANG Rennong, FU Ying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrument, the problem of air combat situation assessment is equivalent to the situation classification problem of air combat data. The fuzzy C-means clustering algorithm is proposed to cluster the selected air combat sample data and the situation classification of the data is determined by the data correlation analysis in combination with the clustering results and the pilots' description of the air combat process. On the basis of semi-supervised naive Bayes classifier, an improved algorithm is proposed based on data classification confidence, through which the situation classification of air combat data is carried out. The simulation results show that the improved algorithm can assess the air combat situation effectively and the improvement of the algorithm can promote the classification performance without significantly affecting the efficiency of the classifier.
ISSN:1004-4132
DOI:10.21629/JSEE.2018.04.11