Improved pruning algorithm for Gaussian mixture probability hypothesis density filter
With the increment of the number of Gaussian com-ponents, the computation cost increases in the Gaussian mixture probability hypothesis density (GM-PHD) filter.Based on the the-ory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian com...
Gespeichert in:
Veröffentlicht in: | Journal of systems engineering and electronics 2018-04, Vol.29 (2), p.229-235 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the increment of the number of Gaussian com-ponents, the computation cost increases in the Gaussian mixture probability hypothesis density (GM-PHD) filter.Based on the the-ory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian compo-nents'means and covariance,but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algo-rithm for tracking very closely proximity targets.Moreover,it solves the end-less while-loop problem without the need of a second merging step.Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones. |
---|---|
ISSN: | 1004-4132 |
DOI: | 10.21629/JSEE.2018.02.02 |