Robust two-stage reduced-dimension STAP algorithm and its performance analysis

A new two-stage reduced-dimension space-time adaptive processing (STAP) approach, which combines the subcoherent processing interval (sub-CPI) STAP and the principal component analysis (PCA), is proposed to achieve a more enhanced convergence measure of effectiveness (MOE). Furthermore, in the case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems engineering and electronics 2016-10, Vol.27 (5), p.954-960
Hauptverfasser: Fan, Yuanzhang, Liu, Yongxu, An, Jianping, Bu, Xiangyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new two-stage reduced-dimension space-time adaptive processing (STAP) approach, which combines the subcoherent processing interval (sub-CPI) STAP and the principal component analysis (PCA), is proposed to achieve a more enhanced convergence measure of effectiveness (MOE). Furthermore, in the case of the subspace leakage phenomenon, the proposed STAP method is modified to hold the fast convergence MOE by using the covariance matrix taper (CMT) technique. Both simulation and real airborne radar data processing are provided to analyze the convergence MOE performance of the proposed STAP methods. The results show the proposed method is more suitable for the practical radar applications when compared with the conventional sub-CPI STAP method.
ISSN:1004-4132
DOI:10.21629/JSEE.2016.05.02