Geometric active contour based approach for segmentation of high-resolution spaceborne SAR images

Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems engineering and electronics 2015-02, Vol.26 (1), p.69-76
Hauptverfasser: Zhang, Shaoming, He, Fang, Zhang, Yunling, Wang, Jianmei, Mei, Xiao, Feng, Tiantian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.
ISSN:1004-4132
1004-4132
DOI:10.1109/JSEE.2015.00010