粗正交小波网络及其在交通流预测中的应用

TP18; 基于交通流预测的特点和输入向量的主成分分析方法,把粗集理论与正交小波网络相结合,给出了一种基于粗集的正交小波网络交通预测模型,并成功应用于城市交通流的实时预测.粗正交小波网络具有极强的鲁棒性,可以有效克服季节、天气等随机因素对交通流量预测性能的影响;主成分分析方法解决了正交小波网络多维输入时的维数灾难.实验结果表明,该模型的预测精度和收敛速度明显优于常规BP网络和小波框架神经网络,对交通流量等预测问题具有较高的应用价值....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:系统工程理论与实践 2005, Vol.25 (8), p.124-129
Hauptverfasser: 杨立才, 贾磊, 孔庆杰, 林姝
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP18; 基于交通流预测的特点和输入向量的主成分分析方法,把粗集理论与正交小波网络相结合,给出了一种基于粗集的正交小波网络交通预测模型,并成功应用于城市交通流的实时预测.粗正交小波网络具有极强的鲁棒性,可以有效克服季节、天气等随机因素对交通流量预测性能的影响;主成分分析方法解决了正交小波网络多维输入时的维数灾难.实验结果表明,该模型的预测精度和收敛速度明显优于常规BP网络和小波框架神经网络,对交通流量等预测问题具有较高的应用价值.
ISSN:1000-6788
DOI:10.3321/j.issn:1000-6788.2005.08.019