粗正交小波网络及其在交通流预测中的应用
TP18; 基于交通流预测的特点和输入向量的主成分分析方法,把粗集理论与正交小波网络相结合,给出了一种基于粗集的正交小波网络交通预测模型,并成功应用于城市交通流的实时预测.粗正交小波网络具有极强的鲁棒性,可以有效克服季节、天气等随机因素对交通流量预测性能的影响;主成分分析方法解决了正交小波网络多维输入时的维数灾难.实验结果表明,该模型的预测精度和收敛速度明显优于常规BP网络和小波框架神经网络,对交通流量等预测问题具有较高的应用价值....
Gespeichert in:
Veröffentlicht in: | 系统工程理论与实践 2005, Vol.25 (8), p.124-129 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP18; 基于交通流预测的特点和输入向量的主成分分析方法,把粗集理论与正交小波网络相结合,给出了一种基于粗集的正交小波网络交通预测模型,并成功应用于城市交通流的实时预测.粗正交小波网络具有极强的鲁棒性,可以有效克服季节、天气等随机因素对交通流量预测性能的影响;主成分分析方法解决了正交小波网络多维输入时的维数灾难.实验结果表明,该模型的预测精度和收敛速度明显优于常规BP网络和小波框架神经网络,对交通流量等预测问题具有较高的应用价值. |
---|---|
ISSN: | 1000-6788 |
DOI: | 10.3321/j.issn:1000-6788.2005.08.019 |