粗糙核k-means聚类算法

通过研究核聚类算法,以及粗糙集,提出了一个新的用于聚类分析的租糙核聚类方法。通过mercer核映射把输入空间中的样本映射到Hilbert空间,使样本空间中没有显现的特征在特征空间中突现出来,在这种样本差异加大的基础上,结合粗糙集的思想,把样本分别划到相应聚类中心的上、下近似中,上、下近似中的样本按照一定的比例来共同决定新的聚类中心。这样不但聚类精度大大提高,而且算法收敛速度也较快。仿真实验的结果表明该算法的可行性和有效性。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Xi tong fang zhen xue bao 2008, Vol.20 (4), p.921-925
1. Verfasser: 周涛 张艳宁 袁和金 陆惠玲 邓方安
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:通过研究核聚类算法,以及粗糙集,提出了一个新的用于聚类分析的租糙核聚类方法。通过mercer核映射把输入空间中的样本映射到Hilbert空间,使样本空间中没有显现的特征在特征空间中突现出来,在这种样本差异加大的基础上,结合粗糙集的思想,把样本分别划到相应聚类中心的上、下近似中,上、下近似中的样本按照一定的比例来共同决定新的聚类中心。这样不但聚类精度大大提高,而且算法收敛速度也较快。仿真实验的结果表明该算法的可行性和有效性。
ISSN:1004-731X