基于多元共生遗传神经网络的藻类预测仿真

提出一种多元共生遗传神经网络(PGANN),从遗传算法和神经网络——进化和学习两方面及其相互关系着手完善进化过程,以提高优化效果和泛化能力。该算法包括一个共生平衡交叉算子,一种多元选择策略和一种神经网络的分级优化策略,其中共生平衡算子能够兼顾进化过程中的方向性、多样性和自适应性;多元选择策略能够适应进化过程不同时段对选择压力不同的需求;而分级优化使运算规模和运算速度之间的矛盾得到缓解。将该改进的遗传神经网络PGANN应用于水库和湖泊有毒的优势蓝绿藻爆发预测,取得了满意的效果。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Xi tong fang zhen xue bao 2008, Vol.20 (2), p.480-484
1. Verfasser: 姚志红 费敏锐 孔海南
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:提出一种多元共生遗传神经网络(PGANN),从遗传算法和神经网络——进化和学习两方面及其相互关系着手完善进化过程,以提高优化效果和泛化能力。该算法包括一个共生平衡交叉算子,一种多元选择策略和一种神经网络的分级优化策略,其中共生平衡算子能够兼顾进化过程中的方向性、多样性和自适应性;多元选择策略能够适应进化过程不同时段对选择压力不同的需求;而分级优化使运算规模和运算速度之间的矛盾得到缓解。将该改进的遗传神经网络PGANN应用于水库和湖泊有毒的优势蓝绿藻爆发预测,取得了满意的效果。
ISSN:1004-731X