一种基于神经网络和遗传算法的拟人智能控制方法
提出一种基于Hopfield神经网络(HNN)和遗传算法(GA)混合策略的拟人智能控制方法。首先利用拟人智能控制得到定性控制律(线性或非线性),然后利用GA和HNN的混合优化策略实现定性控制律的定量化——首先,基于网格法产生GA的初始种群;然后,基于实数编码并采用最优个体保留策略、2/4择优选择以及引入控制经验的改进GA进行全局优化;最后,为了克服GA的后期收敛速度慢和局部优化能力缺乏,利用HNN的快速优化能力进行末段搜索,最终产生全局最优解。将该方法用于二级倒立摆系统的控制,仿真和试验结果均表明该方法有效。...
Gespeichert in:
Veröffentlicht in: | Xi tong fang zhen xue bao 2004, Vol.16 (8), p.1835-1838 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 提出一种基于Hopfield神经网络(HNN)和遗传算法(GA)混合策略的拟人智能控制方法。首先利用拟人智能控制得到定性控制律(线性或非线性),然后利用GA和HNN的混合优化策略实现定性控制律的定量化——首先,基于网格法产生GA的初始种群;然后,基于实数编码并采用最优个体保留策略、2/4择优选择以及引入控制经验的改进GA进行全局优化;最后,为了克服GA的后期收敛速度慢和局部优化能力缺乏,利用HNN的快速优化能力进行末段搜索,最终产生全局最优解。将该方法用于二级倒立摆系统的控制,仿真和试验结果均表明该方法有效。 |
---|---|
ISSN: | 1004-731X |
DOI: | 10.3969/j.issn.1004-731X.2004.08.063 |