基于多特征融合的中文文本分类研究
【目的】通过结合拼音字符特征、汉字字符特征、词级别语义特征和词性特征,缓解文本所呈现出的弱结构化、拼写错误及其同音词较多的问题,丰富语义特征,提高模型的分类能力.【方法】多特征融合的文本分类方法,在词级别特征的基础上进行词性特征、汉字字符特征和拼音字符特征构建多特征语义表示,然后将特征输入BiGRU中获取上下文语义特征,输入CNN中获取局部语义特征,最终将特征进行融合并输入Softmax中进行分类,预测需要的类别标签.【结果】在两个不同的数据集下,多特征融合的模型的准确率分别达到83.3%和91.1%,比其他分类模型准确率至少提升了7个百分点.【局限】实验数据数量较少,未在更多的数据集上进行验...
Gespeichert in:
Veröffentlicht in: | 数据分析与知识发现 2021-10, Vol.5 (10), p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 【目的】通过结合拼音字符特征、汉字字符特征、词级别语义特征和词性特征,缓解文本所呈现出的弱结构化、拼写错误及其同音词较多的问题,丰富语义特征,提高模型的分类能力.【方法】多特征融合的文本分类方法,在词级别特征的基础上进行词性特征、汉字字符特征和拼音字符特征构建多特征语义表示,然后将特征输入BiGRU中获取上下文语义特征,输入CNN中获取局部语义特征,最终将特征进行融合并输入Softmax中进行分类,预测需要的类别标签.【结果】在两个不同的数据集下,多特征融合的模型的准确率分别达到83.3%和91.1%,比其他分类模型准确率至少提升了7个百分点.【局限】实验数据数量较少,未在更多的数据集上进行验证.【结论】所提方法提升了模型的语义表征能力,是一种有效的文本分类模型,为企业进行高效文本分类提供了有效支持. |
---|---|
ISSN: | 2096-3467 |
DOI: | 10.11925/infotech.2096-3467.2021.0228 |