The ATF/CREB site is the key element for transcription of the human RNA methyltransferase like 1 gene, a newly discovered 17p13.3 gene
The human RNA methyltransferase like 1 gene (RNMTL1) is one of thirteen newly discovered genes within a 116 Kb segment of the chromosome 17p13.3 that suffers from a high frequent loss of heterozygosity in human hepatocellular carcinoma in China[1-5]. To understand the molecular mechanisms underlying...
Gespeichert in:
Veröffentlicht in: | Cell research 2002-09, Vol.12 (3-4), p.177-197 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The human RNA methyltransferase like 1 gene (RNMTL1) is one of thirteen newly discovered genes within a 116 Kb segment of the chromosome 17p13.3 that suffers from a high frequent loss of heterozygosity in human hepatocellular carcinoma in China[1-5]. To understand the molecular mechanisms underlying transcription control of the RNMTL1 gene in human cancers, we decline using of the conventional approach where the cis-elements bound by the known transcription factors are primary targets, and carried out the systematic analyses to dissect the promoter structure and identify/characterize the key cis-elements that are responsible for its strong expression in cell. The molecular approaches applied included 1, the primer extension for mapping of the transcription starts; 2, the transient transfection/reporter assays on a large number of deletion and site-specific mutants of the promoter segment for defining the minimal promoter and the crucial elements within; and 3, the electrophoresis mobility shift assay with specific antibodies for reconfirming the nature of the transcription factors and their cognate cis-elements. We have shown that the interaction of an ATF/CREB element (-38 to -31) and its cognate transcription factors play a predominant role in the promoter activity of the RNMTL1 gene. The secondary DNA structures of the ATF/CREB element play a more vital role in the protein-DNA interaction. Finally, we reported a novel mechanism underlying the YY1 mediated transcription repression, namely, the ATF/CREB dependent transcription-repression by YY1 is executed in absence of its own sequence-specific binding. |
---|---|
ISSN: | 1001-0602 1748-7838 |
DOI: | 10.1038/sj.cr.7290124 |