基于最大策略熵深度强化学习的通信干扰资源分配方法

TN975; 针对通信组网对抗中干扰资源分配的优化问题,提出了一种基于最大策略熵深度强化学习(MPEDRL)的干扰资源分配方法.该方法将深度强化学习思想引入到通信对抗干扰资源分配领域,并通过加入最大策略熵准则且自适应调整熵系数,以增强策略探索性加速收敛至全局最优.该方法将干扰资源分配建模为马尔可夫决策过程,通过建立干扰策略网络输出分配方案,构建剪枝孪生结构的干扰效果评估网络完成方案效能评估,以策略熵最大化和累积干扰效能最大化为目标训练策略网络和评估网络,决策干扰资源最优分配方案.仿真结果表明,所提出的方法能有效解决组网对抗中的干扰资源分配问题,且相比于已有的深度强化学习方法具有学习速度更快,训...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:西北工业大学学报 2021, Vol.39 (5), p.1077-1086
Hauptverfasser: 饶宁, 许华, 齐子森, 宋佰霖, 史蕴豪
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TN975; 针对通信组网对抗中干扰资源分配的优化问题,提出了一种基于最大策略熵深度强化学习(MPEDRL)的干扰资源分配方法.该方法将深度强化学习思想引入到通信对抗干扰资源分配领域,并通过加入最大策略熵准则且自适应调整熵系数,以增强策略探索性加速收敛至全局最优.该方法将干扰资源分配建模为马尔可夫决策过程,通过建立干扰策略网络输出分配方案,构建剪枝孪生结构的干扰效果评估网络完成方案效能评估,以策略熵最大化和累积干扰效能最大化为目标训练策略网络和评估网络,决策干扰资源最优分配方案.仿真结果表明,所提出的方法能有效解决组网对抗中的干扰资源分配问题,且相比于已有的深度强化学习方法具有学习速度更快,训练过程波动性更小等优点,干扰效能高出DDP G方法15%.
ISSN:1000-2758
DOI:10.3969/j.issn.1000-2758.2021.05.019