基于机器学习的中文微博情感分类研究
在中文微博数据的文本情感分类任务中使用机器学习方法 ,为研究不同的特征集对情感分类准确率的影响,综合了一元词特征、句法特征、微博特征、基于评价对象特征、词典特征用于支持向量机分类器中,通过准确率、召回率、F指数比较分析不同特征组合对于分类性能的影响。所提方法用于微博数据中关于药品二甲双胍的评论文本,实验结果表明,一元词特征对文本情感分类的准确率高于其他单类特征,而在与句法特征、微博特征、基于评价对象特征、词典特征的综合使用得到了最高的分类精度。...
Gespeichert in:
Veröffentlicht in: | 未来与发展 2015 (4), p.59-63 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 在中文微博数据的文本情感分类任务中使用机器学习方法 ,为研究不同的特征集对情感分类准确率的影响,综合了一元词特征、句法特征、微博特征、基于评价对象特征、词典特征用于支持向量机分类器中,通过准确率、召回率、F指数比较分析不同特征组合对于分类性能的影响。所提方法用于微博数据中关于药品二甲双胍的评论文本,实验结果表明,一元词特征对文本情感分类的准确率高于其他单类特征,而在与句法特征、微博特征、基于评价对象特征、词典特征的综合使用得到了最高的分类精度。 |
---|---|
ISSN: | 1003-0166 |
DOI: | 10.3969/j.issn.1003-0166.2015.04.011 |