Continuous Extruding Extending Forming of Semi-solid A2017 Alloy
Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to produce fiat bar of A2017 alloy were carried oat. The forming process, metal flow be...
Gespeichert in:
Veröffentlicht in: | Journal of Wuhan University of Technology. Materials science edition 2006-03, Vol.21 (1), p.76-79 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to produce fiat bar of A2017 alloy were carried oat. The forming process, metal flow behavior in die and microstructure and mechanical property of prodacts were investigated. It is shown that if the pouring temperature of melt was higher, the die was filled with semi-solid slurry with low solid fraction and periodical cracks would occur on the product surface ; If its pouring temperature was lower or the preheating temperature of die was lower, semisolid slurry would solidify rapidly and block the die after entering the cavity. The analysis of mass flow trace shows that the semi-solid slurry move forward layer by layer and fills the die extending cavity in radiation manner and the velocity of mass flow in the central area of extending cavity and exit of mould is the maximum, and then decreases gradually from the center to both sides of die wall. By inereasiug the die extending angle, the velocity of mass flow becomes more homogeneous. Under rational process control and die design, the A2017 fiat bar with transverse section of 10 × 50 mm and with good surface and fine equiaxed grains can be obtained by continuous extruding/extending forming process. The product's tensile strength and elongation are 420.5 MPa and 14.2% , respectively. |
---|---|
ISSN: | 1000-2413 1993-0437 |
DOI: | 10.1007/bf02861476 |