语义空间下基于情感表达的生成式文本隐写方法
TP309; 针对现有生成式文本隐写方法存在的"过度优化"文本质量以及生成的隐写文本在语义表达上缺乏约束等问题,提出了一种在语义空间下基于情感表达的生成式文本隐写方法.该方法利用新媒体平台提供的情景融合的伪装场景,研究如何利用无监督抽取模型从原始数据集中抽取情感表达组合候选集合,并基于改进的二部图排序算法对情感表达组合候选集合进行排序,得到情感表达组合集合;然后将其映射到语义空间,实现基于情感表达组合生成用户观点的同时嵌入秘密信息.实验结果表明,与同类语义空间下生成式文本隐写方法相比,所提方法生成的含密商品评论的困惑度最低可达10.536,且含密商品评论与主题具有较强相关性...
Gespeichert in:
Veröffentlicht in: | 通信学报 2023-04, Vol.44 (4), p.176-186 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP309; 针对现有生成式文本隐写方法存在的"过度优化"文本质量以及生成的隐写文本在语义表达上缺乏约束等问题,提出了一种在语义空间下基于情感表达的生成式文本隐写方法.该方法利用新媒体平台提供的情景融合的伪装场景,研究如何利用无监督抽取模型从原始数据集中抽取情感表达组合候选集合,并基于改进的二部图排序算法对情感表达组合候选集合进行排序,得到情感表达组合集合;然后将其映射到语义空间,实现基于情感表达组合生成用户观点的同时嵌入秘密信息.实验结果表明,与同类语义空间下生成式文本隐写方法相比,所提方法生成的含密商品评论的困惑度最低可达10.536,且含密商品评论与主题具有较强相关性,进一步保证了隐写文本的认知隐蔽性,同时所提方法还可有效地用于安全保密通信领域,能够避免发送方被追踪溯源和关联分析. |
---|---|
ISSN: | 1000-436X |
DOI: | 10.11959/j.issn.1000-436x.2023045 |