Automated flare forecasting using a statistical learning technique

We present a new method for automatically forecasting the occurrence of solar flares based on photospheric magnetic measurements. The method is a cascading combination of an ordinal logistic regression model and a support vector machine classifier. The predictive variables are three photospheric mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in astronomy and astrophysics 2010-08, Vol.10 (8), p.785-796
Hauptverfasser: Yuan, Yuan, Shih, Frank Y, Jing, Ju, Wang, Hai-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new method for automatically forecasting the occurrence of solar flares based on photospheric magnetic measurements. The method is a cascading combination of an ordinal logistic regression model and a support vector machine classifier. The predictive variables are three photospheric magnetic parameters, i.e., the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The output is true or false for the occurrence of a certain level of flares within 24 hours. Experimental results, from a sample of 230 active regions between 1996 and 2005, show the accuracies of a 24- hour flare forecast to be 0.86, 0.72, 0.65 and 0.84 respectively for the four different levels. Comparison shows an improvement in the accuracy of X-class flare forecasting.
ISSN:1674-4527
2397-6209
DOI:10.1088/1674-4527/10/8/008