全连续算子与拓扑度的相关证明及实例探究

非线性泛函是现代数学研究中很重要的工具,非线性泛函分析包括拓扑度理论、半序方法、变分方法、分歧理论和Banach空间微分方程理论,本文讨论非线性算子的连续性与有界性,全连续算子与拓扑度相关性质的证明,并用实例证明相关结论....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:泰山学院学报 2015-06, Vol.37 (3), p.6-10
1. Verfasser: 祁琼
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:非线性泛函是现代数学研究中很重要的工具,非线性泛函分析包括拓扑度理论、半序方法、变分方法、分歧理论和Banach空间微分方程理论,本文讨论非线性算子的连续性与有界性,全连续算子与拓扑度相关性质的证明,并用实例证明相关结论.
ISSN:1672-2590