数字人文视域下SikuBERT增强的史籍实体识别研究
利用自然语言处理技术深入挖掘典籍文献,推进中文古籍文献的数字化,对于推动历史学习、增强文化自信与促进文明传播具有重要意义.命名实体识别研究是自然语言处理中的基础性环节,文章基于BERT-base、RoBERTa、GuwenBERT、SikuBERT、SikuRoBERTa等预训练模型,以"前四史"和《左传》为研究语料,构建人名、地名、时间等命名实体识别任务.实验结果表明:SikuBERT、SikuRoBERTa在无标点语料、小范围语料上能够取得较基准模型更好的效果;语体风格、语料规模对模型性能产生一定影响;BERT模型更为适应大规模语料任务.实验验证了基于《四库全书》繁体语...
Gespeichert in:
Veröffentlicht in: | 图书馆论坛 2022, Vol.42 (10), p.61-72 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 利用自然语言处理技术深入挖掘典籍文献,推进中文古籍文献的数字化,对于推动历史学习、增强文化自信与促进文明传播具有重要意义.命名实体识别研究是自然语言处理中的基础性环节,文章基于BERT-base、RoBERTa、GuwenBERT、SikuBERT、SikuRoBERTa等预训练模型,以"前四史"和《左传》为研究语料,构建人名、地名、时间等命名实体识别任务.实验结果表明:SikuBERT、SikuRoBERTa在无标点语料、小范围语料上能够取得较基准模型更好的效果;语体风格、语料规模对模型性能产生一定影响;BERT模型更为适应大规模语料任务.实验验证了基于《四库全书》繁体语料预训练的BERT模型在预训练-微调范式下典籍命名实体识别的可行性,构建了基于SikuBERT的典籍命名实体识别软件,为进一步开展典籍文本挖掘和利用提供参考. |
---|---|
ISSN: | 1002-1167 |
DOI: | 10.3969/j.issn.1002-1167.2022.10.009 |