Selectivity modulation in the consecutive hydrogenation of benzaldehyde via functionalization of carbon nanotubes

Hydrogenation of benzaldehyde is a typical consecutive reaction, since the intermediate benzyl alcohol is apt to be further hydrogenated. Here we demonstrate that the selectivity of benzyl alcohol can be tuned via functionalization of carbon nanotubes (CNTs), which are used as the support of Pd. Wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of natural gas chemistry 2012-05, Vol.21 (3), p.241-245
Hauptverfasser: Zhou, Yonghua, Liu, Jing, Li, Xingyun, Pan, Xiulian, Bao, Xinhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogenation of benzaldehyde is a typical consecutive reaction, since the intermediate benzyl alcohol is apt to be further hydrogenated. Here we demonstrate that the selectivity of benzyl alcohol can be tuned via functionalization of carbon nanotubes (CNTs), which are used as the support of Pd. With the original CNTs, the selectivity of benzyl alcohol is 88% at a 100% conversion of benzaldehyde. With introduction of oxygen-containing groups onto CNTs, it drops to 27%. In contrast, doping CNTs with N atoms, the selectivity reaches 96% under the same reaction conditions. The kinetic study shows that hydrogenation of benzyl alcohol is significantly suppressed, which can be attributed to weakened adsorption of benzyl alcohol. This is most likely related to the modified electronic structure of Pd species via interaction with functionalized CNTs, as shown by XPS characterization.
ISSN:1003-9953
DOI:10.1016/S1003-9953(11)60359-9