A Device for Simulating Soil Nutrient Extraction and Plant Uptake

In situ evaluating the availability of soil nutrients has been a challenge. In this study, a new type of Device for Simulating Soil Nutrient Extraction and Plant Uptake (DSSNEPU) and its operating procedures were introduced. The device consists of a sampling tube, a fluid supply system, a low pressu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pedosphere 2012-12, Vol.22 (6), p.755-763
Hauptverfasser: YANG, Xu-Jian, LAI, Yong-Lin, MO, Jin-Yu, SHEN, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In situ evaluating the availability of soil nutrients has been a challenge. In this study, a new type of Device for Simulating Soil Nutrient Extraction and Plant Uptake (DSSNEPU) and its operating procedures were introduced. The device consists of a sampling tube, a fluid supply system, a low pressure system, a tube sheath and an elution cylinder. The sampling tube was firstly soaked in the solution of 0.5 mol L-1 NaHCO3 and then buried into soils. The fluid supply system was connected to the sampling tube and the deionized water was supplied. During the period, low pressure system started a vacuum for 3 min every 10 rain interval. After extraction, the sampling tube was removed and the nutrients on the sampling tube were eluted with 0.5 tool L-1 HCl. The elution solution was used for nutrient measurement. The amounts of P and K extracted by DSSNEPU reached the maximal values after 4 h. No significant increases of P and K were observed for longer extraction duration. The optimal temperature for extracting P and K was 30 ℃ in this experiment. Extracted P and K were increased by 83.3% and 84.6% with the employment of low pressure system in comparison to those without employing low pressure system. Correlation analysis indicated that 1~ and K extracted by DSSNEPU were highly correlated with those by conventional chemical extraction and by plant uptake. The above results suggest that this device is applicable to assess the availability of nutrients in soils.
ISSN:1002-0160
2210-5107
DOI:10.1016/S1002-0160(12)60061-7