线性回归M估计量的Wild Bootstrap方法研究

Wild Bootstrap是一种适用于回归方程中存在异方差时的再取样方法。本文通过线性回归Huber估计量的模拟研究,比较了不同的bootstrap方法,并验证了wild bootstrap方法在有限样本下的有效性。通过运用一种简单有限样本统计量对wild bootstrap加以修正,对于存在异方差性且基于固定设计的回归模型而言,wild bootstrap成为首选的重复抽样法。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:统计研究 2015, Vol.32 (8), p.99-103
1. Verfasser: 祝金甫 汤伟 冯兴东
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wild Bootstrap是一种适用于回归方程中存在异方差时的再取样方法。本文通过线性回归Huber估计量的模拟研究,比较了不同的bootstrap方法,并验证了wild bootstrap方法在有限样本下的有效性。通过运用一种简单有限样本统计量对wild bootstrap加以修正,对于存在异方差性且基于固定设计的回归模型而言,wild bootstrap成为首选的重复抽样法。
ISSN:1002-4565