基于结构张量空间模型的文本分类

在自然语言处理中,将非结构化的文本数据表示成结构化数据是文本处理工作的基础,文本表示的优劣对后期文本处理的效果有直接的影响。提出一种新的结构化文本表示模型——结构张量空间模型,该模型将文本按照其自身的层次含义进行分层表示,相比较于传统的文本表示模型,更充分地体现文本的结构信息。研究了基于结构张量空间模型的文本分类问题,实验结果表明,在小样本数据下,结合结构张量空间模型的分类器性能更好。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:统计与信息论坛 2019-07, Vol.34 (7), p.10-18
Hauptverfasser: 庄建昌, 武娇, 洪彩凤, 顾兴全
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:在自然语言处理中,将非结构化的文本数据表示成结构化数据是文本处理工作的基础,文本表示的优劣对后期文本处理的效果有直接的影响。提出一种新的结构化文本表示模型——结构张量空间模型,该模型将文本按照其自身的层次含义进行分层表示,相比较于传统的文本表示模型,更充分地体现文本的结构信息。研究了基于结构张量空间模型的文本分类问题,实验结果表明,在小样本数据下,结合结构张量空间模型的分类器性能更好。
ISSN:1007-3116
DOI:10.3969/j.issn.1007-3116.2019.07.002