Multilayer Coating of Tetrandrine-loaded PLGA Nanoparticles: Effect of Surface Charges on Cellular Uptake Rate and Drug Release Profile

The effect of surface charges on the cellular uptake rate and drug release profile of tetrandrine-loaded poly(lactic-co-glycolic acid)(PLGA) nanoparticles(TPNs) was studied. Stabilizer-free nanoprecipitation method was used in this study for the synthesis of TPNs. A typical layer-by-layer approach w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Huazhong University of Science and Technology. Medical sciences 2016-02, Vol.36 (1), p.14-20
1. Verfasser: 孟睿 李珂 陈喆 史琛
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of surface charges on the cellular uptake rate and drug release profile of tetrandrine-loaded poly(lactic-co-glycolic acid)(PLGA) nanoparticles(TPNs) was studied. Stabilizer-free nanoprecipitation method was used in this study for the synthesis of TPNs. A typical layer-by-layer approach was applied for multi-coating particles' surface with use of poly(styrene sulfonate) sodium salt(PSS) as anionic layer and poly(allylamine hydrochloride)(PAH) as cationic layer. The modified TPNs were characterized by different physicochemical techniques such as Zeta sizer, scanning electron microscopy and transmission electron microscopy. The drug loading efficiency, release profile and cellular uptake rate were evaluated by high performance liquid chromatography and confocal laser scanning microscopy, respectively. The resultant PSS/PAH/PSS/PAH/TPNs(4 layers) exhibited spherical-shaped morphology with the average size of 160.3±5.165 nm and zeta potential of –57.8 m V. The encapsulation efficiency and drug loading efficiency were 57.88% and 1.73%, respectively. Multi-layer coating of polymeric materials with different charges on particles' surface could dramatically influence the drug release profile of TPNs(4 layers vs. 3 layers). In addition, variable layers of surface coating could also greatly affect the cellular uptake rate of TPNs in A549 cells within 8 h. Overall, by coating particles' surface with those different charged polymers, precise control of drug release as well as cellular uptake rate can be achieved simultaneously. Thus, this approach provides a new strategy for controllable drug delivery.
ISSN:1672-0733
1993-1352
DOI:10.1007/s11596-016-1535-5