Preparation of Magnetic Molecularly Imprinted Polymers for Selective Isolation and Determination of Kaempferol and Protoapigenone in Macrothelypteris torresiana

Novel uniform-sized magnetic molecularly imprinted polymers (MMIPs) were synthe- sized for selective recognition of active antitumor ingredients of kaempferol (KMF) and protoapi- genone (PA) in Macrothelypteris torresiana (M. torresiana) by surface molecular imprinting tech- nique in this study. Sup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Huazhong University of Science and Technology. Medical sciences 2014-12, Vol.34 (6), p.845-855
1. Verfasser: 蔡培珊 赵洋 杨通华 陈静 熊朝梅 阮金兰
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Novel uniform-sized magnetic molecularly imprinted polymers (MMIPs) were synthe- sized for selective recognition of active antitumor ingredients of kaempferol (KMF) and protoapi- genone (PA) in Macrothelypteris torresiana (M. torresiana) by surface molecular imprinting tech- nique in this study. Super paramagnetic core-sheU nanoparticles (γ-MPS-SiO2@Fe3O4) were used as seeds, KMF as template molecule, acrylamide (AM) as functional monomer, and N, N'-methylene bisacrylamide (BisAM) as cross-linker. The prepared MMIPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum fiT/R), transmission electron microscopy (TEM) and thermo-gravimetric analysis (TGA), respectively. The recognition capacity of MMIPs was 2.436 times of non-imprinted polymers. The adsorption results based on kinetics and isotherm analysis were in accordance with the pseudo-second-order model (R2=0.9980) and the Langmuir adsorption model (R2=0.9944). The value of E (6.742 kJ/mol) calculated from the Dubinin-Radushkevich isotherm model suggested that the physical adsorption via hydrogen-bonding might be predominant. The Scatchard plot showed a single line (R2=0.9172) and demonstrated the homogeneous recognition sites on MMIPs for KMF. The magnetic solid phase extraction (MSPE) based on MMIPs as sorbent was established for fast and selective enrichment of KMF and its structural analogue PA from the crude extract of M. torresiana and then KMF and PA were detected by HPLC-UV. The established method showed good performance and satisfactory results for real sample analysis. It also showed the feasi- bility of MMIPs for selective recognition of active structural analogues from complex herbal extracts.
ISSN:1672-0733
1993-1352
DOI:10.1007/s11596-014-1363-4