Quantitative Analysis of Myocaridal Perfusion in Rabbits by Tansthoracic Real-time Myocardial Contrast Echocardiography

To evaluate the feasibility of real-time myocardial contrast echocardiography (RTMCE) by quantitative analysis of myocardial perfusion in rabbits, transthoracic RTMCE was performed in 10 healthy rabbits by using continuous infusion of SonoVue into the auricular vein. The short axis view at the papil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Huazhong University of Science and Technology. Medical sciences 2009-12, Vol.29 (6), p.795-799
Hauptverfasser: Deng, Heping, Xie, Mingxing, Wang, Xinfang, Lv, Qing, Li, Songnan, Bao, Yuting, Wang, Jing, Lu, Xiaofang, Yang, Yali, Lu, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To evaluate the feasibility of real-time myocardial contrast echocardiography (RTMCE) by quantitative analysis of myocardial perfusion in rabbits, transthoracic RTMCE was performed in 10 healthy rabbits by using continuous infusion of SonoVue into the auricular vein. The short axis view at the papillary muscle level was obtained. The duration of the time that the contrast took to appear in right heart, left heart and myocardium was recorded. The regional myocardial signal intensity (SI) versus re-filling time plots were fitted to an exponential function: y(t) =A(1–e–β(t–t0)) + C, where y is SI at any given time, A is the SI plateau that reflects myocardial blood volume, and β is the slope of the refilling curve that reflects myocardial microbubble velocity. The A, β and A×β values at different infusion rate of SonoVue were analyzed and the A, β and A×β values in each segment in the short axis view at the papillary muscle level were compared. All the animal experiments were successful and high-quality im-ages were obtained. The best intravenous infusion rate for SonoVue was 30 mL/h. The contrast appeared in right heart, left heart and myocardium at 7.5±2.2 s, 9.1±2.4 s and 12.2±1.6 s respectively. After 16.6±2.3s, myocardial opacification reached a steady state. The mean A, β and A×β value in the short axis view at the papillary muscle level were 9.8±3.0 dB, 1.4±0.5 s-1 and 13.5±3.6 dB×s-1 respectively. A, β and A×β values showed no significant differences among 6 segments. It was suggested that RTMCE was feasible for quantitative analysis of myocardial perfusion in rabbits. It provides a non-invasive method to evaluate the myocardial perfusion in rabbit disease models.
ISSN:1672-0733
1993-1352
DOI:10.1007/s11596-009-0625-z