Noise Reduction of Welding Defect Image Based on NSCT and Anisotropic Diffusion
In order to reduce noise effectively in the welding defect image and preserve the minutiae information, a noise reduction method of welding defect image based on nonsubsampled contourlet transform (NSCT) and anisot-ropic diffusion is proposed. Firstly, an X-ray welding defect image is decomposed by...
Gespeichert in:
Veröffentlicht in: | Transactions of Tianjin University 2014, Vol.20 (1), p.60-65 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to reduce noise effectively in the welding defect image and preserve the minutiae information, a noise reduction method of welding defect image based on nonsubsampled contourlet transform (NSCT) and anisot-ropic diffusion is proposed. Firstly, an X-ray welding defect image is decomposed by NSCT. Then total variation (TV) model and Catte_PM model are used for the obtained low-pass component and band-pass components, respec-tively. Finally, the denoised image is synthesized by inverse NSCT. Experimental results show that, compared with the hybrid method of wavelet threshold shrinkage with TV diffusion, the method combining NSCT with P_Laplace diffu-sion, and the method combining contourlet with TV model and adaptive contrast diffusion, the proposed method has a great improvement in the aspects of subjective visual effect, peak signal-to-noise ratio (PSNR) and mean-square error (MSE). Noise is suppressed more effectively and the minutiae information is preserved better in the image. |
---|---|
ISSN: | 1006-4982 1995-8196 |
DOI: | 10.1007/s12209-014-2124-y |