Analysis of Asynchronism-Synchronism of Regional Precipitation in Inter-Basin Water Transfer Areas
The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general method, called pair-copula construction, is introduced to functions are allowed to be...
Gespeichert in:
Veröffentlicht in: | Transactions of Tianjin University 2012-10, Vol.18 (5), p.384-392 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general method, called pair-copula construction, is introduced to functions are allowed to be introduced in this method. Correspondingly, the related characteristics of complex multivariate can be described by a cascade of pair-copula acting on two variables at a time. In the analysis of asynchronism-synchronism of regional precipitation in WED inter- basin water transfer areas, the pair-copula construction method is compared with the general modeling method of mul- tivariate copula. The results show that the local dependence structure would exist among hydrologic variables even in three-dimensional cases. In this situation, the general modeling method of multivariate copula would face difficulties in fitting distribution. However, the pair-copula construction method could capture the local information of hydrologic variables efficiently by introducing different types of copula distribution functions. Moreover, the compensation ca- pacity of water resources is strong in different hydrological areas of WED water transfer project. The asynchronous frequency of wetness and dryness is 69.64% and the favorable frequency for water transfer is 46.15%. |
---|---|
ISSN: | 1006-4982 1995-8196 |
DOI: | 10.1007/s12209-012-1685-x |