Tight sandstone gas accumulation mechanism and development models

Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential. However, heated debates and gaps still remain regarding classification standards of tight sand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Petroleum science 2015-11, Vol.12 (4), p.587-605
Hauptverfasser: Jiang, Zhen-Xue, Li, Zhuo, Li, Feng, Pang, Xiong-Qi, Yang, Wei, Liu, Luo-Fu, Jiang, Fu-Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential. However, heated debates and gaps still remain regarding classification standards of tight sandstone gas, and critical controlling factors, accumulation mechanisms, and devel- opment modes of tight sandstone reservoirs are not deter- mined. Tight sandstone gas reservoirs in China are generally characterized by tight strata, widespread distri- bution areas, coal strata supplying gas, complex gas-water relations, and abnormally low gas reservoir pressure. Water and gas reversal patterns have been detected via glass tube and quartz sand modeling, and the presence of critical geological conditions without buoyancy-driven mecha- nisms can thus be assumed. According to the timing of gas charging and reservoir tightening phases, the following three tight sandstone gas reservoir types have been identified: (a) "accumulation-densification" (AD), or the conventional tight type, (b) "densification-accumulation" (DA), or the deep tight type, and (c) the composite tight type. For the AD type, gas charging occurs prior to reser- voir densification, accumulating in higher positions under buoyancy-controlled mechanisms with critical controlling factors such as source kitchens (S), regional overlaying cap rocks (C), gas reservoirs, (D) and low fluid potential areas (P). For the DA type, reservoir densification prior to the gas charging period (GCP) leads to accumulation in depres- sions and slopes largely due to hydrocarbon expansive forces without buoyancy, and critical controlling factors are effective source rocks (S), widely distributed reservoirs (D), stable tectonic settings (W) and universal densification of reservoirs (L). The composite type includes features of the AD type and DA type, and before and after reservoir densification period (RDP), gas charging and accumulation is controlled by early buoyancy and later molecular expansive force respectively. It is widely distributed in anticlinal zones, deep sag areas and slopes, and is con- trolled by source kitchens (S), reservoirs (D), cap rocks (C), stable tectonic settings (W), low fluid potential areas (P), and universal reservoir densification (L). Tight gas resources with great resource potential are widely dis- tributed worldwide, and tight gas in China that presents advantageous reservoir-forming conditions
ISSN:1672-5107
1995-8226
DOI:10.1007/s12182-015-0061-6