Jones type C-basic construction in non-equilibrium Hopf spin models

Let H be a finite dimensional Hopf C*-algebra, and let K be a Hopf *-subalgebra of H . Considering that the field algebra ℱ K of a non-equilibrium Hopf spin model carries a D ( H, K )-invariant subalgebra A K , this paper shows that the C*-basic construction for the inclusion A K ⊆ ℱ K can be expres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2023-11, Vol.43 (6), p.2573-2588
Hauptverfasser: Wei, Xiaomin, Jiang, Lining
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be a finite dimensional Hopf C*-algebra, and let K be a Hopf *-subalgebra of H . Considering that the field algebra ℱ K of a non-equilibrium Hopf spin model carries a D ( H, K )-invariant subalgebra A K , this paper shows that the C*-basic construction for the inclusion A K ⊆ ℱ K can be expressed as the crossed product C*-algebra ℱ K ⋊ D ( H , K ) . Here, D ( H, K ) is a bicrossed product of the opposite dual H o p ^ and K . Furthermore, the natural action of D ( H , K ) ^ on D ( H, K ) gives rise to the iterated crossed product ℱ K ⋊ D ( H , K ) ⋊ D ( H , K ) ^ , which coincides with the C*-basic construction for the inclusion ℱ K ⊆ ℱ K ⋊ D ( H , K ) . In the end, the Jones type tower of field algebra ℱ K is obtained, and the new field algebra emerges exactly as the iterated crossed product.
ISSN:0252-9602
1572-9087
DOI:10.1007/s10473-023-0615-4