Jones type C-basic construction in non-equilibrium Hopf spin models
Let H be a finite dimensional Hopf C*-algebra, and let K be a Hopf *-subalgebra of H . Considering that the field algebra ℱ K of a non-equilibrium Hopf spin model carries a D ( H, K )-invariant subalgebra A K , this paper shows that the C*-basic construction for the inclusion A K ⊆ ℱ K can be expres...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2023-11, Vol.43 (6), p.2573-2588 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
H
be a finite dimensional Hopf C*-algebra, and let
K
be a Hopf *-subalgebra of
H
. Considering that the field algebra
ℱ
K
of a non-equilibrium Hopf spin model carries a
D
(
H, K
)-invariant subalgebra
A
K
, this paper shows that the C*-basic construction for the inclusion
A
K
⊆
ℱ
K
can be expressed as the crossed product C*-algebra
ℱ
K
⋊
D
(
H
,
K
)
. Here,
D
(
H, K
) is a bicrossed product of the opposite dual
H
o
p
^
and
K
. Furthermore, the natural action of
D
(
H
,
K
)
^
on
D
(
H, K
) gives rise to the iterated crossed product
ℱ
K
⋊
D
(
H
,
K
)
⋊
D
(
H
,
K
)
^
, which coincides with the C*-basic construction for the inclusion
ℱ
K
⊆
ℱ
K
⋊
D
(
H
,
K
)
. In the end, the Jones type tower of field algebra
ℱ
K
is obtained, and the new field algebra emerges exactly as the iterated crossed product. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1007/s10473-023-0615-4 |