The Fekete-Szegö Inequality and Successive Coefficients Difference for a Subclass of Close-to-Starlike Mappings in Complex Banach Spaces
Let C be the familiar class of normalized close-to-convex functions in the unit disk. In [17], Koepf demonstrated that, as to a function f ( ξ ) = ξ + ∑ m = 2 ∞ a m ξ m in the class C , max f ∈ C ∣ a 3 − λ a 2 2 ∣ ≤ { 3 − 4 λ , λ ∈ [ 0 , 1 3 ] , 1 3 + 4 9 λ , λ ∈ [ 1 3 , 2 3 ] , 1 , λ ∈ [ 2 3 , 1 ]...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2023-09, Vol.43 (5), p.2075-2088 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
C
be the familiar class of normalized close-to-convex functions in the unit disk. In [17], Koepf demonstrated that, as to a function
f
(
ξ
)
=
ξ
+
∑
m
=
2
∞
a
m
ξ
m
in the class
C
,
max
f
∈
C
∣
a
3
−
λ
a
2
2
∣
≤
{
3
−
4
λ
,
λ
∈
[
0
,
1
3
]
,
1
3
+
4
9
λ
,
λ
∈
[
1
3
,
2
3
]
,
1
,
λ
∈
[
2
3
,
1
]
.
By applying this inequality, it can be proven that ∥
a
3
∣−∣
a
2
∥ ≤ 1 for close-to-convex functions. Now we generalized the above conclusions to a subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1007/s10473-023-0509-5 |