On the Rigorous Mathematical Derivation for the Viscous Primitive Equations with Density Stratification
In this paper, we rigorously derive the governing equations describing the motion of a stable stratified fluid, from the mathematical point of view. In particular, we prove that the scaled Boussinesq equations strongly converge to the viscous primitive equations with density stratification as the as...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2023-05, Vol.43 (3), p.1081-1104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1104 |
---|---|
container_issue | 3 |
container_start_page | 1081 |
container_title | Acta mathematica scientia |
container_volume | 43 |
creator | Pu, Xueke Zhou, Wenli |
description | In this paper, we rigorously derive the governing equations describing the motion of a stable stratified fluid, from the mathematical point of view. In particular, we prove that the scaled Boussinesq equations strongly converge to the viscous primitive equations with density stratification as the aspect ratio goes to zero, and the rate of convergence is of the same order as the aspect ratio. Moreover, in order to obtain this convergence result, we also establish the global well-posedness of strong solutions to the viscous primitive equations with density stratification. |
doi_str_mv | 10.1007/s10473-023-0306-1 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e202303006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxwlxb_e202303006</wanfj_id><sourcerecordid>sxwlxb_e202303006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-6a731d5c447f52e553ee46064dee547f6e5a216976cdebf6b4ee8023b64e35713</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EEqXwA7j5yiFgO17aIyplkYqK2K6Wk05SV20Cdrr9eyYNEicOlsfj773RPEIuObvmjJmbyJk0acIEnpTphB-RHldGJEM2MMekx4TCWjNxSs5iXDDGtdCyR8ppRZs50Fdf1qFeR_rs8Llyjc_dkt5B8Bus64oWdTiAnz7mLfcS_Mo3fgN0_L0-IJFufTNHTRV9s6dvTcB2gT7t5zk5KdwywsXv3Scf9-P30WMymT48jW4nSS6MbBLtTMpnKpfSFEqAUimA1EzLGYDCngblBNdDo_MZZIXOJMAAl860hFQZnvbJVee7dVXhqtIu6nWocKKNu-1yl1kQiGNETCPLOzYPdYwBCvuFS7mwt5zZNlXbpWpRYdtUbesvOk1Etioh_A34X_QD53J7rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Rigorous Mathematical Derivation for the Viscous Primitive Equations with Density Stratification</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Pu, Xueke ; Zhou, Wenli</creator><creatorcontrib>Pu, Xueke ; Zhou, Wenli</creatorcontrib><description>In this paper, we rigorously derive the governing equations describing the motion of a stable stratified fluid, from the mathematical point of view. In particular, we prove that the scaled Boussinesq equations strongly converge to the viscous primitive equations with density stratification as the aspect ratio goes to zero, and the rate of convergence is of the same order as the aspect ratio. Moreover, in order to obtain this convergence result, we also establish the global well-posedness of strong solutions to the viscous primitive equations with density stratification.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1007/s10473-023-0306-1</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica scientia, 2023-05, Vol.43 (3), p.1081-1104</ispartof><rights>Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2023</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-6a731d5c447f52e553ee46064dee547f6e5a216976cdebf6b4ee8023b64e35713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxwlxb-e/sxwlxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10473-023-0306-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10473-023-0306-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pu, Xueke</creatorcontrib><creatorcontrib>Zhou, Wenli</creatorcontrib><title>On the Rigorous Mathematical Derivation for the Viscous Primitive Equations with Density Stratification</title><title>Acta mathematica scientia</title><addtitle>Acta Math Sci</addtitle><description>In this paper, we rigorously derive the governing equations describing the motion of a stable stratified fluid, from the mathematical point of view. In particular, we prove that the scaled Boussinesq equations strongly converge to the viscous primitive equations with density stratification as the aspect ratio goes to zero, and the rate of convergence is of the same order as the aspect ratio. Moreover, in order to obtain this convergence result, we also establish the global well-posedness of strong solutions to the viscous primitive equations with density stratification.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EEqXwA7j5yiFgO17aIyplkYqK2K6Wk05SV20Cdrr9eyYNEicOlsfj773RPEIuObvmjJmbyJk0acIEnpTphB-RHldGJEM2MMekx4TCWjNxSs5iXDDGtdCyR8ppRZs50Fdf1qFeR_rs8Llyjc_dkt5B8Bus64oWdTiAnz7mLfcS_Mo3fgN0_L0-IJFufTNHTRV9s6dvTcB2gT7t5zk5KdwywsXv3Scf9-P30WMymT48jW4nSS6MbBLtTMpnKpfSFEqAUimA1EzLGYDCngblBNdDo_MZZIXOJMAAl860hFQZnvbJVee7dVXhqtIu6nWocKKNu-1yl1kQiGNETCPLOzYPdYwBCvuFS7mwt5zZNlXbpWpRYdtUbesvOk1Etioh_A34X_QD53J7rQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Pu, Xueke</creator><creator>Zhou, Wenli</creator><general>Springer Nature Singapore</general><general>School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230501</creationdate><title>On the Rigorous Mathematical Derivation for the Viscous Primitive Equations with Density Stratification</title><author>Pu, Xueke ; Zhou, Wenli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-6a731d5c447f52e553ee46064dee547f6e5a216976cdebf6b4ee8023b64e35713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Xueke</creatorcontrib><creatorcontrib>Zhou, Wenli</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Xueke</au><au>Zhou, Wenli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Rigorous Mathematical Derivation for the Viscous Primitive Equations with Density Stratification</atitle><jtitle>Acta mathematica scientia</jtitle><stitle>Acta Math Sci</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>43</volume><issue>3</issue><spage>1081</spage><epage>1104</epage><pages>1081-1104</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this paper, we rigorously derive the governing equations describing the motion of a stable stratified fluid, from the mathematical point of view. In particular, we prove that the scaled Boussinesq equations strongly converge to the viscous primitive equations with density stratification as the aspect ratio goes to zero, and the rate of convergence is of the same order as the aspect ratio. Moreover, in order to obtain this convergence result, we also establish the global well-posedness of strong solutions to the viscous primitive equations with density stratification.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s10473-023-0306-1</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2023-05, Vol.43 (3), p.1081-1104 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e202303006 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Analysis Mathematics Mathematics and Statistics |
title | On the Rigorous Mathematical Derivation for the Viscous Primitive Equations with Density Stratification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Rigorous%20Mathematical%20Derivation%20for%20the%20Viscous%20Primitive%20Equations%20with%20Density%20Stratification&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Pu,%20Xueke&rft.date=2023-05-01&rft.volume=43&rft.issue=3&rft.spage=1081&rft.epage=1104&rft.pages=1081-1104&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1007/s10473-023-0306-1&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e202303006%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=sxwlxb_e202303006&rfr_iscdi=true |