On the Rigorous Mathematical Derivation for the Viscous Primitive Equations with Density Stratification

In this paper, we rigorously derive the governing equations describing the motion of a stable stratified fluid, from the mathematical point of view. In particular, we prove that the scaled Boussinesq equations strongly converge to the viscous primitive equations with density stratification as the as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2023-05, Vol.43 (3), p.1081-1104
Hauptverfasser: Pu, Xueke, Zhou, Wenli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we rigorously derive the governing equations describing the motion of a stable stratified fluid, from the mathematical point of view. In particular, we prove that the scaled Boussinesq equations strongly converge to the viscous primitive equations with density stratification as the aspect ratio goes to zero, and the rate of convergence is of the same order as the aspect ratio. Moreover, in order to obtain this convergence result, we also establish the global well-posedness of strong solutions to the viscous primitive equations with density stratification.
ISSN:0252-9602
1572-9087
DOI:10.1007/s10473-023-0306-1