Weak solution to the incompressible viscous fluid and a thermoelastic plate interaction problem in 3D
In this paper we deal with a nonlinear interaction problem between an incompressible viscous fluid and a nonlinear thermoelastic plate. The nonlinearity in the plate equation corresponds to nonlinear elastic force in various physically relevant semilinear and quasilinear plate models. We prove the e...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2021, Vol.41 (1), p.19-38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we deal with a nonlinear interaction problem between an incompressible viscous fluid and a nonlinear thermoelastic plate. The nonlinearity in the plate equation corresponds to nonlinear elastic force in various physically relevant semilinear and quasilinear plate models. We prove the existence of a weak solution for this problem by constructing a hybrid approximation scheme that, via operator splitting, decouples the system into two sub-problems, one piece-wise stationary for the fluid and one time-continuous and in a finite basis for the structure. To prove the convergence of the approximate quasilinear elastic force, we develop a compensated compactness method that relies on the maximal monotonicity property of this nonlinear function. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1007/s10473-021-0102-8 |