Weak solution to the incompressible viscous fluid and a thermoelastic plate interaction problem in 3D

In this paper we deal with a nonlinear interaction problem between an incompressible viscous fluid and a nonlinear thermoelastic plate. The nonlinearity in the plate equation corresponds to nonlinear elastic force in various physically relevant semilinear and quasilinear plate models. We prove the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2021, Vol.41 (1), p.19-38
Hauptverfasser: Trifunović, Srđan, Wang, Yaguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we deal with a nonlinear interaction problem between an incompressible viscous fluid and a nonlinear thermoelastic plate. The nonlinearity in the plate equation corresponds to nonlinear elastic force in various physically relevant semilinear and quasilinear plate models. We prove the existence of a weak solution for this problem by constructing a hybrid approximation scheme that, via operator splitting, decouples the system into two sub-problems, one piece-wise stationary for the fluid and one time-continuous and in a finite basis for the structure. To prove the convergence of the approximate quasilinear elastic force, we develop a compensated compactness method that relies on the maximal monotonicity property of this nonlinear function.
ISSN:0252-9602
1572-9087
DOI:10.1007/s10473-021-0102-8